Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 13(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37189486

RESUMO

Since the Bosniak cysts classification is highly reader-dependent, automated tools based on radiomics could help in the diagnosis of the lesion. This study is an initial step in the search for radiomic features that may be good classifiers of benign-malignant Bosniak cysts in machine learning models. A CCR phantom was used through five CT scanners. Registration was performed with ARIA software, while Quibim Precision was used for feature extraction. R software was used for the statistical analysis. Robust radiomic features based on repeatability and reproducibility criteria were chosen. Excellent correlation criteria between different radiologists during lesion segmentation were imposed. With the selected features, their classification ability in benignity-malignity terms was assessed. From the phantom study, 25.3% of the features were robust. For the study of inter-observer correlation (ICC) in the segmentation of cystic masses, 82 subjects were prospectively selected, finding 48.4% of the features as excellent regarding concordance. Comparing both datasets, 12 features were established as repeatable, reproducible, and useful for the classification of Bosniak cysts and could serve as initial candidates for the elaboration of a classification model. With those features, the Linear Discriminant Analysis model classified the Bosniak cysts in terms of benignity or malignancy with 88.2% accuracy.

2.
J Contemp Brachytherapy ; 9(3): 270-276, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28725252

RESUMO

PURPOSE: Skin cancer is the most common tumor in the population. There are different therapeutic modalities. Brachytherapy is one of the techniques used, in which it is necessary to build customized moulds for some patients. Currently, these moulds are made by hand using rudimentary techniques. We present a new procedure based on 3D printing and the analysis of the clinical workflow. MATERIAL AND METHODS: Moulds can be made either by hand or by automated 3D printing. For making moulds by hand, a patient's alginate negative is created and, from that, the gypsum cast and customized moulds are made by hand from the patient's negative template. The new process is based on 3D printing. The first step is to take a 3D scan of the surface of the patient and then, 3D modelling software is used to obtain an accurate anatomical reconstruction of the treatment area. We present the clinical workflow using 3D scanning and printing technology, comparing its costs with the usual custom handmade mould protocol. RESULTS: The time spent for the new process is 6.25 hours, in contrast to the time spent for the conventional process, which is 9.5 hours. We found a 34% reduction in time required to create a mould for brachytherapy treatment. The labor cost of the conventional process is 211.5 vs. 152.5 hours, so the reduction is 59 hours. There is also a 49.5% reduction in the financial costs, mostly due to lack of need of a computed tomography (CT) scan of the gypsum and the mould. 3D scanning and printing offers financial benefits and reduces the clinical workload. CONCLUSIONS: As the present project demonstrates, through the application of 3D printing technologies, the costs and time spent during the process in the clinical workload in brachytherapy treatment are reduced. Overall, 3D printing is a promising technique for brachytherapy that might be well received in the community.

3.
J Radiat Res ; 55(5): 1009-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24722683

RESUMO

Radiation of experimental culture cells on plates with various wells can cause a risk of underdosage as a result of the existence of multiple air-water interfaces. The objective of our study was to quantify this error in culture plates with multiple wells. Radiation conditions were simulated with the GAMOS code, based on the GEANT4 code, and this was compared with a simulation performed with PENELOPE and measured data. We observed a slight underdosage of ∼ 4% on the most superficial half of the culture medium. We believe that this underdosage does not have a significant effect on the dose received by culture cells deposited in a monolayer and adhered to the base of the wells.


Assuntos
Absorção de Radiação , Ar , Técnicas de Cultura de Células/instrumentação , Fenômenos Fisiológicos Celulares/efeitos da radiação , Modelos Estatísticos , Método de Monte Carlo , Espalhamento de Radiação , Animais , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA